

Development of High Performance Laminated Electroformed Shape Memory Composite Materials for Lightweight and Deployable Optics

ACT-02-0096 Contract NAS1-03007

Laminated Deployable Optics

The Best of Two Worlds

Nickel electroformed replica: Smooth, accurate optical surfaces

Shape memory polymer- carbon fiber reinforced, for light weight and controllable deployment

Deployable, lightweight optics

ESSP Needs for Deployable Optics

- ESTO Workshop (2003) identified multiple mission needs for deployable imaging systems requiring apertures of 1 to 5 meters and larger
 - —Microwave- soil moisture, temp radiometry, cloud heights
 - —IR- temperature measurement, radiometry
 - —SAR
 - —Visible- Lasercom, LIDAR
- Deployable optics are an enabling technology for many missions
 - —Lighter weight and stiffer optics
 - —Instrument capabilities enhanced at larger apertures
 - —Cross enterprise value to OSS, Exploration missions

Why Consider Shape Memory Composite Optics?

- Large optics fold in a small package
- Replication Cost and time savings
- Larger design parameter space
- Adaptable to in-space deployment and active control

Study goals :

- —Shape control with smooth surface (2 nm RMS), low mass (1-5 kg/m²)
- —Replication accuracy (<10λ)
- —Stability (temperature, vacuum, creep)
- —Deployability and repeatability (1:10⁴)

Concepts unique to replicated shape memory/plating laminate

- Surface Replication: low stress nickel
 - —Replicates optical figure
 - —Good surface finish
 - —Tough, flexible, Established processes
- Shape memory resin composite
 - —High stiffness, low mass
 - —Suitable for Replication Processes
 - —Low outgassing
 - -Deployable
- Manage the interface stress between the composite and nickel for shape control

Team Responsibilities

Ball Aerospace

- —Concept development and evaluation
- —Integrated Modeling
- —Application engineering

Cornerstone Research Group

- —Specialized shape memory polymer tailoring
- —Composite reinforcement schemes
- —Fabrication of composites

Northwestern University

- —Electroplated optics fabrication
- —Materials research expertise

Combining skills and processes

- Modeling of the composite structure and nickel
- Electroplating processes
- Composite resin and structure development

Modeling Summary

- Comparison of model results and experimental results show promise for using the model to help define hardware parameters
- Current simplified model will be translated into more detailed FEM and thermal models
- These models can be easily added to an integrated end-to-end model being developed under other applications

Model Goals and Assumptions

- Development of material performance models for design
 - Modeling based on measured material properties
 - Provide information for future sample preparation
 - Characterization and definition of properties/processes/geometry to characterize or control
- Continue to update design models using measured performance data and define parameters necessary for optimizing and scaling-up the process to larger optics
- Current model is simple, Excel based
- Can be used to "engineer" the needed materials and structures
 - Preferential shaping, balancing thickness and properties
- Incorporates thermal, material and structural properties
 - Input parameters defined by test results
- Includes flat and single curved mirrors
- Each material layer is homogeneous

Preliminary Results of Model

- Model run for Styrene SMP with 3D Weave Carbon
- Deflections ("roll-up") of convex samples within 50% of experimental data
 - —Due to temperature change (110 C in oven)
 - —Due to added forces
 - —Formula used for flat samples to be modified for better accuracy on curved samples
- Change in length of flat samples due to temperature change within 20% of experimental data

Detailed Modeling

- Update for new material constructions
 - —Symmetric laminations for stability and uniformity
- Comparison with strain measurements made on samples
 - —New constructions fabricated and entering test
- Scalability
 - —Utilize scaling methods developed for other large space structures
- Translate current model into more detailed Finite Element and thermal models that are linked
 - —Include double convex design
 - —Include other materials in the lamination
 - —These models can eventually be integrated into a formal Integrated End-to End Modeling (IM) environment
- IM can include theoretical models for items such as the effect of material microyield on the mirror

Ball Integrated End-to-End Modeling Environment

- Unique Ball capability under development for 7 years.
- State of the art integration capability for coupled /optical /structural /controls /sensors / signal processing/ and disturbance models no artificial boundaries between disciplines.
- Simulink / MATLAB based environment cradle to grave system engineering tool
- Note that experts retain traditional role.

Low Stress Electroplating

Two Approaches for Mirror Fabrication

Electrofabrication (replication)

Conductive and/or Release Layer

Replica

Master/Mandrel

Reflective Surface

Electroplating

Reflective Surface

Conductive Layer (for Non-conductive Substrate)

Bright Ni

Substrate

Superpolish Surface Replicated in Nickel

Surface roughness data meets 2nm RMS

- Zygo interferometer scan data from a developmental cyanate ester resin cast sample.
- Sample shows resin itself meets
 7nm roughness, and is unlikely to distort nickel

- Zygo interferometer scan data shows nickel can meet at least 2 nm roughness
- 0.7 nm polish sapphire flats coated to demonstrate maximum replication smoothness

Surface scatter replication dominated by print through

- 4.85 nm RMS surface roughness replicated in 20 micron thick nickel from polished flat (no composite backing)
- After laminating composite to the back of 20 micron nickel, print-through results in high apparent roughness, profilometer indicates 3 microinch (100 nm) roughness about ~ 33 nm RMS measured with scatterometer
- New composite replication process has demonstrated <5 nm RMS roughness, to be tested with high smoothness (0.3nm) nickel replication mandrel

Shape Memory Polymers Application

Actuation

—Store and release mechanical energy

Reconfiguration

—Temporary modulus reduction to enable shape change

Replication

—Replicate surface from master in manufacturing processes

SMP Development - Cyanate Ester

- CE polymers already used in space
- Transformed conventional CE to SMP
 - —Fully cured, cross-linked for stability
 - —Required new polymer design
- CE shape memory polymer results:
 - Deformation-recovery cycle demonstrated
 - —Activation temperature of 160°C
- Optimization
 - —Enhanced strain recovery
 - —Increased toughness

Cyanate Ester SMP Modulus

Coated CE SMP

Carbon Nanofiber-CE SMP Composite Membrane (0.5.kg/m²)

B7P2 June 23, 2004

Deployment test of spherical surface -no damage to structure

- Self-Deployment tested in oven at 110C
- Lower temp activation polymer being developed

Initial Deployment Test Results Mixed

Delamination occurred during

heating, not during rolling

First Deployment Test

- Optical figure after release from mandrel was poor- astigmatic
- Temperature cycling shape was unchanged by heating, some additional delamination
- Deployability concept validated— Areas without delamination did not show nickel surface damage when stowed at a 15 mm radius (100x tighter than a flight item) and then redeployed to nearoriginal shape
- Nickel-composite adhesion will be researched further - several options available

Before rolling

Deployed Mirror surface undamaged by deployment

- Buckling was observed <u>but</u> only where delaminated
- Remains smooth after several heat annealing cycles
- Surface is smooth at resin cure temp (CTE mismatch)

Surface remains a good reflector after several heating and deformation cycles

Ion etched rear surface of nickel greatly improves adhesion

No Delamination

Thermal cycled 0-200C

Deformed to 20 mm radius

Print through remains a challenge, but is significantly reduced

- Fiber-resin CTE mismatch produces print through
- <u>Sandwich</u> approach is improvement, without fibers near surface
- Neat (resin rich) layer surrounds fiber reinforcement
- Nanofibers and alternate filler reinforcement being investigated

 Neat resin layer reduces fiber print-through effect, but nickelthermal mismatch caused waviness

MultiLayer Lamination reduced moisture loss 40%

- Nickel on both optical surface and rear surface equalizes thermal stresses and seals composite from moisture absorption/loss and outgassing creep
- Thermal vacuum tests show 40% lower moisture loss. Stress relief and dimensional stability TBD
- Optical testing -figure and surface roughness poor on this sample due to abandoned structure concept. Test to be repeated on a better test item utilizing new adhesion process and structure for print through reduction.
- Deployment test –Determine if it can be rolled and unrolled without permanent damage with delamination and creasing.

Shape Memory Mirror Feasibility Demonstrated

- <u>Figure</u>: Low stress nickel process produces <10 waves PTP mirror. Composite replication needs development
- Roughness: Low scatter nickel achieved 2nm RMS
- Outgassing: Shape Memory CE resin meets requirements (0.16% TML)
- <u>Spherical Surfaces</u>: Reinforced composite SMP applied to flat and spherical nickel plating surfaces
- <u>Adhesion</u>: Demonstrated ruggedness of nickel-composite lamination
- Stow and deployment demonstrated without damage to optical surface, deployment repeatability needs development

Critical parameters for continued investigation

- Modeling –Validate prediction of symmetric layers and measured composite properties. Stress model to include matrix of position elements to translate to surface figure and optical performance. Validate scaling laws.
- <u>Flat mirror production</u> fabricate test items for structural data and model verification, and surface finish/print through
- <u>Spherical mirror production</u> —compare performance of improved adhesion, and reduced print through, improved surface figure, figure adjustment
- Deployability: cycling without damage or change, repeatability
- Stability and creep: improvement on conventional composites
- Polymer development:
 - —low CTE resin/composite
 - —low cure temp minimizes
 - —Reinforcement of resin for CTE match, low print through structure
- Optimize nickel thickness to match composite properties

Near Term Goals

- Scale up- to 30-40 cm
 - Complete analytical modeling of components and lamination and fold into the integrated model for optical predictions
 - —Validate analytical model and extend to spherical surfaces
 - —Demonstrate optical surface replication and stability
 - —Demonstrate repeatability of deployment (overcome residual strain)
- Develop structural concepts for accurate deployment
- Validate key processes and performance, and the connection between them
 - Low temp cure and deployment,
 - —Reverse side plating for stability
 - —Evaluate low CTE resin/composite and room temp cure

Conclusions

- Laminated nickel composite optics can provide deployable optical surfaces without delamination or deterioration of metal surface and substrate
- Shape memory control provides more design latitude for deployable optics
- Typical deployment accuracy is consistent with needs for microwave reflectors of 1-2 meter diameter
- Additional work needs to be done
 - —Resin chemistry (low CTE, low temp cure,)
 - —Structures (optimizing deployment, modeling in stow condition)
 - —Durability in the space environment